Algebra I Mid Term Examination

Instructions: All questions do not have same level of difficulty. However, they all carry equal (non-zero) marks. Justify all your answers.

1. Explicitly define an equivalence relation on the real plane \mathbb{R}^2 whose equivalence classes are lines parallel to the line y = x.

2. Let m and n be natural numbers with d being their largest common divisor. Prove that any other common divisor of m and n must divide d.

3. Let (G, \bullet) be a group. Define a new binary operation \odot on G by $g \odot h = h \bullet g$. Show that (G, \odot) is a group and prove that it is isomorphic to (G, \bullet) .

4. Let C_n denote the cyclic group of order n. Prove that for every divisor d of n, there exists a unique subgroup of C_n of order d and find the number of elements of order 8 in the group $\mathbb{Z}/88888\mathbb{Z}$.

5. Let G be a group containing a unique element of order 2, say g_0 . Prove that g_0 commutes with every element of G.

6. Prove that every group of order 6 must have an element of order 2 and an element of order 3.

7. Define a cycle of length l in S_n , the group of permutation on n letters. Prove that order of such a cycle is l and that every element of S_n is a product of disjoint cycles.

8. Classify all groups of order 1, 2, 3, 4, and 5.